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1. Introduction 

 

As a result of their quantized electronic states, the 

quantum dots (QDs) have opened the way for a variety of 

novel device applications and meanwhile have enabled 

advances in fundamental physics studies of three-

dimensional confined structures at the nanometer scale. 

Semiconductor heterostructures QDs have a wide range of 

applications in, for example, optoelectronic and spintronic 

devices, creating a demand for the development of fast and 

reliable methods for modeling their physical properties. 

The electronic structure of interfaces between lattice-

mismatched semiconductors is sensitive to the strain [1,2]. 

One of the leading methods for growing semiconductor 

QDs is the molecular-beam epitaxy, by which self-

assembled small islands are obtained on a thin film that is 

strained with respect to a substrate [3-5]. The 

coarsening/roughening process by which the islands are 

formed is a result of lattice-mismatch-induced strain. In 

the last decade, given the large perspective of applications 

in medicine, a much less expensive technique of obtaining 

QDs by chemical synthesis attracted the interest of 

scientists (see, for example, Ref. [6], and references 

therein). The interpretation of the electronic structure of 

such QDs is profoundly affected by their strain profile.  

Beyond the importance in the growth mechanism 

itself, the strain has a crucial role in engineering the 

physical properties of the nanostructures. Thus, knowledge 

of the strain field derived from the lattices mismatch is 

very important since it substantially modifies the 

electronic band structure of semiconductor nanostructures, 

which, in turn, strongly affects the transport properties [7] 

or the performance of optoelectronic devices [8,9]. The 

optical spectra of semiconductor QDs are strongly 

influenced by strain. Thus, for an accurate simulation of 

the (multi)excitonic spectra, strain should be counted for 

both influence on the effective masses of the carriers [10] 

and on the existence of optical phonons modes [11,12]. 

The spintronics opened the way to a new class of storage 

and computing electronic devices. In such devices, strain 

is one of the control parameters. For example, in the 

intrinsic spin Hall effect, the conductivity of a two-

dimensional electronic gas is influenced by both magnetic 

and strain fields [13,14] and the existence of enormous 

strain fields in self-assembled quantum dots has led to the 

expectation of dramatic effects of piezoelectricity [15-17]. 

Within the continuum elasticity model (CM), the 

strain distribution for isotropic or anisotropic materials is 

obtained by either (i) solving the elasticity equilibrium 

equation [16, 18], or (ii) by minimizing the elastic energy 

stored in the nanostructure [1,19]. In this work, given the 

growing interest in the core-shell (CS) QDs 

nanostructures, we present a theoretical CM approach for 

strain computation in such structures. The strain 

distribution is obtained by solving the linear elasticity 

equilibrium equation. As our modeling is developed for 

high symmetry structures, based on Ref.[18], where the 

strain for spherical QDs is practically the same for both 

isotropic and anisotropic treatments, we consider an 

isotropic treatment. The novelty character of the present 

work is the treatment of the strain field for multi-shell 

structures. Thus, differently to the treatments from the 

literature, which consider QD embedded in infinite matrix 

[1,4,16,18,19] or approximate treatments for QD with one 

finite shell [20,21] our model can be generalized to any 

number of shells. However, for practical reasons, we 

consider a two-shell problem. We obtain explicit analytical 

expressions of the strain for spherical and cylindrical 

symmetry, the results being very useful in the calculus of 

energy structures of CS nanostructures of disc, cylinder, 

and sphere shape, when the strain is appropriate to be 

taken into account within a CM approach. 

The paper is structured as follows. In section 2 we 

present the theory used in describing the strain field. In 

section 3 we apply the theory to several core two-shell 

structures. Section 4 contains the conclusions. 
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2. Theory 
 

In what follows, we consider isotropic materials 

described by the continuum model approach in the linear 

limit, in which the equilibrium equation [22], 

0curlcurl)21(divgrad)1(2  uu νν , is valid ( ν  is 

the Poisson ratio and u the elastic displacement field). For 

spherical CS structures (see Fig. 1), the lattice mismatch 

induces internal displacements in the radial direction r. On 

the other hand, for cylindrical symmetrical CS structures 

(see Fig. 1), the lattice mismatch induces internal 

displacements in both radial and longitudinal direction z. If 

the cylinder bases are fixed the longitudinal displacements 

are zero and the strain field is identical with that of a disc. 

For such longitudinal and/or radial displacements the field 

is irrotational, consequently the displacement fields are 

described by equation 
 

0divgrad u .   (1) 

 

 
 

Fig. 1. Cross-section of the symmetrical spherical 

or cylindrical CS structure. 

 

To find the strain tensor we adopt the following 

strategy. We take solutions of Eq. (1) having the form in 

accordance with the symmetry of the problem. Next, we 

compute the strain tensor components and find the stress 

tensor ij  by applying Hooke’s law [22], 

    ijllijij eeE 
11

211


  (where E is the 

Young modulus). Then, we require the following 

boundary conditions: 
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where AAB1 /)( aaa   and BBC2 /)( aaa   are the 

relative lattice mismatches. Eqs. (2.1-2) express the 

mechanical equilibrium of the interfaces, Eq. (2.3) holds 

for zero (negligible) pressure outside the structure, and 

Eqs. (2.4-5) hold for the shrink-fit induced by the lattice 

mismatch (it makes connection between a continuum 

approach and the crystalline structure of the materials). 

The strain is obtained from the solution of the system of 

Eqs. (2). As can easily be seen the system of equations (2) 

allows an immediate generalization for any number of 

shell. 

 

2.1 Cylindrical symmetry 

 

Next, we find expression of the strain for CS with 

cylindrical symmetry for two shells and then by reduction 

for one shell. 

 

a) Cylinder with fixed bases 

 

For cylindrical CS with fixed bases or disc CS, as we 

already specified, the solutions are identical. The 

displacement written in the usual cylindrical coordinates 

takes the form, )0,0),(( ruru . We search for solutions 

of the form rXrXru X

r /)( 21  , with X = A (the core), B 

or C (the first or second shell, respectively), see Fig.1. 

212121 ,,,,, CCBBAA  are constants and we take 02 A  

to avoid singularity.  

 

a.1) Two shells 

 

Following the above procedure, we obtain the strain 

tensor components. Their non-zero expressions in the limit 

of similar elastic constants,  

,  CBA CBA EEE   are as follows: 
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In Appendix, we give the complete expressions. 

 

a.2) One shell 

 

By taking r1= r0, r2=R, and 01   , we collapse the 

two shells and reduce the problem to that of only one shell. 

The non-zero expressions of the strain tensor components 



Analytical approach for strain field in core multi-shell quantum dots                                                  503 

 

in the limit of similar elastic constants, 

  BA , BA EE   are as follows: 
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(where   stands for R ). 

We observe the calculus correctness and the physical 

tests are checked since AA , eerr , A

hyde  vanish when Rr 0  

(no shell and no pressure outside the core), B

hyde  vanishes 

for thick shell, and )(B rerr , )(B re  vanish for large R at 

large distance of the QD center. In Appendix, we give the 

complete expressions. 

 

b) Cylinder with free bases and one shell 

 

For cylindrical CS with free bases, the displacement 

takes the form ))(,0),(( zuru zru  and modeling the 

longitudinal strain makes the algebra more complex. Next, 

we consider a usual simplification [4] and take 0)( ze A

zz  

and 0)( zeB

zz , which holds for thick shell (in longitudinal 

direction the lattice constant of the core becomes that of 

the shell and the lattice constant of the shell does not 

change). By repeating the procedure we described, we 

obtain: 
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Thus, we recover the results of Grundmann [4] for 

thick shell ( R ). In Appendix, we give the complete 

expressions. 

 

2.2 Spherical symmetry 

 

Next, we find expression of the strain for CS with 

spherical symmetry for two shells and then by reduction 

for one shell. The displacement written in the usual 

spherical coordinates takes the form )0,0),(( ruru . 

 

1) Two shells 

 

We search for solutions of the form 
2

21 /)( rXrXru X

r  , with the same meaning of X as in 

the cylinder case. Following the same procedure, we find 

the strain tensor components. Their non-zero expressions 

in the limit of similar elastic constants, 

CBACBA EEE  ,  are as follows: 
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2) One shell 

 

By taking r1= r0, r2=R, and 01   , we collapse the 

two shells and reduce the problem to that of only one shell. 

The non-zero expressions of the strain tensor components 

in the limit of similar elastic constants, 

BABA EE  ,  are as follows: 
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We notice that eqs (7.1-5) provide the same 
expressions for the tensor components in a CS QD as in 
Ref.[21] and in the limit R  we get the same results 
as in Ref.[4]. 

 

 

3. Applications. Results 
 

Even in the most symmetric crystalline structure, the 

cubic system, the Young modulus and Poisson ratio vary 

with direction. On the other hand, as we already specified, 

the isotropic treatment we consider is justified for highly 

symmetry structures [18] (the influence of the elastic 

anisotropy is very small for sphere). In this isotropic limit, 

the elastic parameters are obtained by identifying the 

linear relation between stress and strain written with the 

stiffness tensor [23] for the (cubic here) crystal with 

Hooke's law. One immediately finds: 
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3.1 Disc shape QDs 
 

As a first example, we consider an in-plane disc 

graphene QD. We show the strain distribution for a QD 

with a honeycomb graphene lattice core (r0=2nm) which is 

coated with a hydrogenated form of graphene, the 

isotropic C-graphane [24] (shell thickness of 0.4nm). For 

the elastic parameters, we consider the values obtained 

using the elastic constants C11 and C12 in Ref. [24]. Thus, 

νgraphene=0.145, Egraphene=3.3710
11 

Nm
-2

, νgraphane=0.075 and 

Egraphane=2.4510
11 
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-2

. The lattice constants from the 

same Ref. [24], agraphene=2.46Å, agraphane=2.54Å, give a 

positive ε = 3.25%. In Fig. 2 one shows the expected 

behavior, the graphene core is stretched ( 0graphene

hyde ) and 

the C-graphane shell is compressed ( 0graphane

hyde ). The 

high value of the hydrostatic strain obtained for the 

graphene/C-graphane QD indicates that a simulation of the 

energy structure of such a nanostructure should consider 

the strain in computation as one of the major importance 

ingredient in the study. 
 

 
Fig. 2. Strain distribution in a graphene/C-graphane QD. 

3.2 Spherical QD 

 

As Eqs. (A1) or (B1) show, the strain of each material 

is dependent on two factors: (i) the elastic parameters (E 

and ν) and (ii) the relative lattice mismatches (ε). 

Modifying these two factors various strain field 

distributions can be obtained. It is interesting to investigate 

the case in which, by adjusting the properties of the second 

shell (or by finding an appropriate material), the elastic 

state of the core can be reversed from compressed to 

stretched or vice versa. 

To illustrate the phenomenon, we consider 

ZnS/CdS/ZnS QD [25] with radii r1 = 1.8 nm, r2 = 2.4 nm, 

R = 3.2 nm. The lattice constant for ZnS (aZnS=5.40Å [26]) 

is considerably smaller (ε1 ≈ 7.5%) than for CdS 

(aCdS=5.82Å [27]); the relative lattice mismatch between 

the CdS and the second shell of ZnS is negative (ε2 ≈ -

7.5%). Here only, we redefined the relative lattice 

mismatch as ε=(aout-ain)/aaverage with aaverage=(aout+ain)/2.  

The parameters E and ν are calculated for ZnS with 

the elastic constants from Ref. [26]: νZnS = 0.384,  EZnS = 

5.5510
10 

Nm
-2

 and for CdS with those from Ref. [28]: νCdS 

= 0.406 and ECdS = 2.9910
10 

Nm
-2

. We obtain the core is 

expanded, 0A

hyde  (see Fig. 3) and conclude that the 

above factor (ii) has a stronger impact. As expected, the 

second shell is expanded, too. If we hypothetically 

increase the Young modulus of the second shell (by 60% 

here) the factor (i) becomes more significant: we obtain a 

compressed core, 0A

hyde  (see Fig. 4), but the second 

shell is still expanded. In practice, this behavior can be 

obtained if we replace the second shell with a suitable 

material, with a lattice constant close to that of ZnS but 

with larger Young modulus. 

As a second application for spherical CS QDs, we 

consider silica (SiO2) coated CdSe/CdS QDs as described 

in Ref. [29]. The photoluminescence (PL) intensity of the 

nanostructure drops with the thickness of the coating shell, 

but the peak position does not change (see Fig 5.2 from 

Ref. [29]). Depending on the mechanical conditions of the 

system, the polymorph silica can have different lattice 

configurations. With our model we can approximate which 

lattice constant the coating shell has by studying the strain 

in the core. As the main PL peak depends on the band gap 

QD and, on the other hand, the band is dependent on the 

strain field (mainly by the hydrostatic strain), we can 

conclude that the shell thickness influences less CdSe

hyde . By 

analyzing the functions )(RfeCdSe

hyd  for different lattice 

constants for the silica coating, we should choose the R 

dependence of 
CdSe

hyde  with the shortest abrupt decay 

followed by constant value. For exemplification, we 

consider a CdSe/CdS QD with r1=2nm and r2=2.3nm. We 

observe that the hydrostatic strain of the core changes very 

weakly with the thickness of the coat from approximately 

R=6nm.This behavior is obtained for a lattice constant 

asilica=5.963Å (see Fig. 5).  
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Fig. 3. Strain distribution in ZnS/CdS/ZnS QD. 
 

 
 

Fig. 4. Strain distribution in ZnS/CdS/modified ZnS QD. 

 

 

4. Conclusions 
 

Our isotropic CM model provides, in principle, 

analytical expressions of the strain field for any QD 

configuration with circular or spherical symmetry. The 

present work focuses only on the core/shell/shell system 

for practical reasons. Our theoretical results extend 

knowledge in the strain field of CS QDs and cover existent 

reports in the literature regarding its value [4, 20, 21, 30]. 

Our results on the strain field can be very useful to the 

energy structure simulations of CS QDs, where usually 

(from computational reasons) such isotropic modeling is 

taken into account. Interesting is the fact that though 

simple, the model is able to guide strain engineering in 

QDs by coating them with materials with certain elastic 

properties. 

 
  

Fig. 5. The dependence of 
CdSe

hyde  with the thickness 

of the silica shell. 
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Appendix: Strain calculation 

 

The complete expressions of the non-zero strain 

tensor components are as follows. In order to be easy 

readable, we made some notations: for example, BC3 is the 

3
rd

 notation made for the Cylinder, for B, the first shell. 

 

A. Cylindrical symmetry 

 

a.1) Cylindrical QD with fixed bases and two shells  
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a.2) Cylindrical QD with fixed bases and one shell 
 

AB

rr Cee 10

AA   ,       (A2.1) 
 

AB

hyd Ce 10

A 2 ,                    (A2.2) 
 

with

1

22

0

22

0B

A

B
1

)1)(21(

)21(1

1

1
1





















Rr

Rr

E

E
C

AB

AAB








. 

 













2

2

40

B

,
)21(

1)(
r

R
Cre

B

B

rr





 ,           (A2.3) 

 

B

hyd Ce 40

B 2 ,    (A2.4) 
 

with  
1

2

0

2
2

0

2

4 1
21

21

1

1

21
1























 rR

E

ErR
C

B

A

B

A

A

B

B

B










. 

 

b) Cylindrical QD with free bases and one shell 
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B. Spherical symmetry 

 

1) Spherical QD with two shells 
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2) Spherical QD with one shell 
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